
1 DOTENV-ENTERPRISE.com

State of Env
Files Report
2025

http://DOTENV-ENTERPRISE.com

2 DOTENV-ENTERPRISE.com

Table of
contents

3 Introduction

4 Ecosystem overview

5 Developer experience

6 Feature comparison

7 Security gaps

8 Encrypted env files

9 AI implications

10 Summary

http://DOTENV-ENTERPRISE.com

3 DOTENV-ENTERPRISE.com

In 2013, env files began as a simple way to manage
configuration for Heroku-style apps. Over the next
decade, they quietly became a universal standard.
Today, nearly every modern codebase uses them —
even if just during development.

The env pattern emerged from the growing need to
separate configuration from code. Inspired by
Heroku’s developer experience and tools like
Foreman, early adopters began managing app secrets
and environment-specific settings in a plaintext file. In
2011, the Twelve-Factor App cemented this approach
by advocating for environment variables as the
canonical method for runtime configuration.

The first dotenv library appeared in Ruby in 2012,
followed quickly by ports to Node.js, Python, PHP, Go,
and more. By the mid-2010s, env support was
widespread—not only as a de facto convention but
increasingly bundled directly into frameworks. What
started as a developer convenience had become a
foundational layer of modern software infrastructure.

Today that foundational layer is maturing with the
introduction of encrypted env files via dotenvx. These
encrypted versions maintain backwards-compatibility
and familiar developer workflows while adding
security. And just as env files once supported the rise
of the cloud, they’re now quietly powering the next
wave of software: AI agents, agentic tools, and
autonomous coding workflows—all of which need a
way to securely configure themselves.

Introduction
The rise of the env file

2008 – Secrets lived in code

2011 – Twelve-Factor App

2012 – First dotenv

2013 – Node, Python, PHP support

2014 – Express.js adopts dotenv

2015 – Create React App adopts dotenv

2016 – Next.js adopts dotenv

2020 – Vite adopts dotenv

2023 – Node.js adds native env support

2024 – Dotenvx introduces encrypted env files

2025 – AI agents make use of env files

3

http://DOTENV-ENTERPRISE.com

4 DOTENV-ENTERPRISE.com

Env files have become a cornerstone of modern software—
embraced by languages, frameworks, and teams worldwide.

Ecosystem overview

Language Library Yearly Installs

Node.js npm@dotenv 2.5 Billion

Python python-dotenv 1.8 Billion

PHP phpdotenv 125 Million*

Ruby dotenv 100 Million*

Cross-platform dotenvx 24 Million

* Estimated based on lifetime downloads

Install rates are in
the billions per year.

Install rates
are growing.
Dotenvx burst onto the scene with over
900% growth in its first year—driven by
early adopters of the encrypted env file
format. Security-conscious teams are
embracing encryption of env files by
default.

Meanwhile, python-dotenv saw over
100% growth, and npm@dotenv grew
over 40%. These surges align with the
rise of AI agents and Agentic coding

workflows—especially in Python and
Node.js ecosystems, where env files
remain the simplest way to inject secrets
into runtime environments.

We can’t yet say whether security and
agent-driven development are directly
linked—but both are reshaping how
configuration is handled in modern
software.

http://DOTENV-ENTERPRISE.com

5 DOTENV-ENTERPRISE.com

Developer experience
Env files are widely adopted across development teams due to
their simplicity and alignment with common software workflows.
They offer a lightweight way to manage configuration across
environments—supporting portability, ease of setup, and broad
compatibility without requiring external services or runtime
dependencies.

Honestly? I love .env files because they just work.

I don’t have to spin up some secrets manager, register a new app, or figure out how to
inject config into five different environments. I drop a .env file next to my code, and my
app runs. That’s it.

They’re readable. They're versioned (kind of). They don’t care what language I’m using —
I can use them in Node, Python, Go, Docker, whatever. I don’t need to learn new syntax or
install anything weird. And when I hand off my repo to someone else, I don’t have to
explain much:
“Copy .env.example to .env, fill in your keys, and go.”

There’s something powerful about that level of shared muscle memory. It’s invisible
infrastructure. Every dev knows what to do with it.

Could it be more secure? Sure. Could it be better structured? Probably. But until there’s
something just as portable, just as language-agnostic, just as developer-friendly — I’m
sticking with .env.

What developers say.

http://DOTENV-ENTERPRISE.com

6 DOTENV-ENTERPRISE.com

Feature comparison
Parsing behavior is inconsistent

0%

20%

40%

60%

80%

100%

dotenvx
npm@dotenv
npm@nextenv
docker-compose
dotenv-ruby
python-dotenv
godotenv
phpdotenv
docker

13%

43%

52%52%
55%

63%

72%

90%

100% Dotenvx is the only library in our test
suite to achieve 100% pass rate
across 80+ real-world env cases.

Most of the libraries fail on progressive
variable expansion and nuances
between single and double quotes
leading to missing variables and
inconsistent behavior across
environments.

Docker particularly falls short on its
env file parsing–unable to even
support quotes or inline comments.

source: www.dotenvx.com/spec

These inconsistencies are manageable in
small apps—but become liabilities in
security-sensitive, agent-driven, or multi-
platform environments.

6

http://DOTENV-ENTERPRISE.com
http://www.dotenvx.com/spec

7

Security gaps
Plaintext by default

Most teams treat env files as "safe enough"—just add them to .gitignore and move on. But in practice,
they’re often shared over Slack, copied into CI/CD systems, and left behind on laptops. This makes them
one of the most widely used yet weakly protected containers of secrets in modern software.

🚫 NO ENCRYPTION

Env files are plaintext by default—if you can
read the file, you can read the secrets.

🚫 NO AUDIT TRAIL

There’s no way to know who viewed or changed
the file. This matters for compliance and
incident response.

🚫 NO DISTRIBUTION MODEL

Most teams sync env files manually via email,
chat, or shared folders—leaving them exposed
and out of sync.

🧑💻 🤖 DEVELOPERS AND AGENTS

Secrets aren’t just stored in production
anymore—they live on developer laptops, local
env files, and now inside AI agents acting on
behalf of users. These are surfaces with
minimal visibility, no access controls, and often
no encryption.

As agents gain more capabilities, they also
inherit the same trust flaws developers have
faced for years—becoming a new vector for
secret leakage.

“We’ve hardened production, but secrets still leak from the edges—
developer machines, CI jobs, rogue scripts. That’s where env files live.”

8

Encrypted env files
Making env files secure at rest

In 2025, dotenvx introduced
encrypted env files—a response to
the long-standing security gaps in
plaintext secrets. The format retains
everything developers value:
portability, readability, and workflow
simplicity. But now, secrets are
protected at rest, by default.

Dotenvx encrypts only the values,
leaving variable names (API_KEY=...)
intact. This means teams can still
version and share .env.encrypted
files just like before—but without
exposing sensitive data.

source: Dotenvx: Reducing Secrets
Risk with Cryptographic Separation

✔ Encrypted
✔ Auditable
✔ Built-in distribution model
✔ Backwards-compatible
✔ Unchanged developer workflows

https://dotenvx.com/dotenvx.pdf
https://dotenvx.com/dotenvx.pdf
https://dotenvx.com/dotenvx.pdf

9

AI implications
The future is autonomous,
and it needs secrets
As AI agents evolve from copilots to coworkers,
they’re beginning to act independently—
deploying infrastructure, calling APIs, writing
code, and chaining tools together. These agents
don’t just need instructions—they need
credentials. And increasingly, those credentials
are delivered the same way developers receive
them: via env files.

9

Env files are showing
up in AI workflows

• Code generation tools often scaffold env files

automatically (e.g. for OpenAI keys)

• Agents run in local/dev environments, where

env files are the simplest injection method

• Multi-agent frameworks (like CrewAI,

LangChain) rely on env files for secret injection

• Developers guiding LLMs default to existing

patterns—including copying env files

These environments lack centralized
controls. AI tools can run on a developer’s
laptop or a throwaway VM. Once an env
file is accessible to an agent, it can be
read, logged, or reused—potentially
outside its intended scope.

The risk: uncontrolled access

Encrypted env files offer a path forward:

The opportunity:
encrypted, agent-safe config

• Environment-variable semantics stay the same
• Agents can be granted access to a key, not the

secret itself
• Secrets remain secure, auditable, and scoped

to runtime

Just like the env file helped developers configure cloud apps in 2013, it may
now help autonomous agents operate securely in 2025 and beyond.

10

For over a decade, env files have served as a practical,
language-agnostic solution for managing environment-
specific configuration. Their widespread adoption
across ecosystems and tooling reflects not only their
technical simplicity, but also their alignment with how
developers build, share, and deploy software.

However, as modern applications become more
distributed, automated, and security-sensitive—
particularly in the context of agentic systems and AI-
driven infrastructure—the limitations of plaintext env
files become more apparent.

Dotenvx introduces an evolutionary step forward:
encrypted env files that maintain backward
compatibility while enabling strong encryption,
environment-specific access, and secure distribution
across developer workflows. This approach preserves
the developer experience while addressing the
increasingly urgent need for secret management that
is both secure and seamless.

As the role of autonomous software agents grows, and
as configuration becomes increasingly dynamic and
decentralized, encrypted env files offer a model for
trustless, portable, and audit-ready configuration—at
every layer of the stack.

Conclusion

	Table of
	contents
	Introduction
	Ecosystem overview
	Developer experience
	Feature comparison
	Security gaps
	Encrypted env files
	AI implications
	Conclusion

